SPRING 2023: MATH 791 EXAM 1 SOLUTIONS

For this exam, you may use your notes, the Daily Summary, and any homework you have done, but you may not
consult any other sources, including, any algebra textbook, the internet, graduate students not in this class, or any
professor except your Math 791 instructor. You may not cite any group theoretical facts not covered in class or the
homework. To receive full credit, all proofs must be complete and contain the appropriate amount of detail. Please
upload a pdf copy of your solutions to Canvas no later than 5pm on Monday, February 20.

Good luck on the exam!

1. Let G be a group and H C G a proper subgroup. The normalizer of H is the set Ng(H) = {g € G | gHg™* = H}.

(i) Show that Ng(H) is the largest subgroup of G in which H is normal and there is a 1-1 correspondence
between the distinct (left) cosets of Ng(H) and the distinct conjugates of H. (2 points)
(ii) Show that if G is finite, then G # UgeG gHg™'. (5 points)
(iii) Let G = Gl2(C) and H be the subgroup of invertible lower triangular matrices. Show that G =, gHg™ .
Hint: Use the Jordan Canonical Form theorem. (3 points)

Solution. For (i), suppose a,b € Ng(H). Then abH(ab)™* = abHb 'a™ = aHa™' = H, so ab,€ Ng(H). Suppose
a 'ha € a”'Ha. Then, h = ah’a™, for some ' € H. Thus, a 'ha = a'(ah'a"")a = b’ € H, showing a ' Ha C H.
The reverse containment is similar. Thus, a *Ha = H, so Ng(H) is a subgroup. Suppose K is a subgroup of G
containing H in which H is normal. Then kHk™' = H, for all k € K, so that K C Ng(H), showing that Ng(H) is
the largest subgroup of GG in which H is normal.

If now X denotes the set of distinct conjugates of H and Y denotes the set of distinct left cosets of Ng(H), we
define ¢ : X — Y by ¢(gHg™") = gNg(H). Then aHa™* = bHb™" if and only if (b~ a)Ha " 'b = H if and only if
(b"'a)H(b"a)™!' = H if and only if b~'a € Ng(H) if and only if aNg(H) = bNg(H), showing that ¢ is well-defined
and 1-1. Moreover, 1) is clearly onto, which gives what we want.

For (ii), by (i), if g1 Hgy ", ..., g-Hgy * are the distinct conjugates of H, then g1 Ng(H), ..., g-Ng(H) are the distinct
left cosets of Ng(H). Now, G is the disjoint union of the cosets g; Na(H), so that |G| = r - |[Ng(H)|. On the other
hand, |g:Hg; ‘| = |H| < |Ng(H)| and |, g:Hg; '| < r - |H]|, since e belongs to each g;Hg; '. Thus, we cannot have
G=U; gng;l-

For (iii), if A € G, then there exists g € G such that g~ Ag is in JCF, which is lower triangular. Note, that since A
is invertible, its eigenvalues are non-zero, so that g~'Ag € G, and therefore "' Ag € H. Thus, A € gHg™*, which
gives what we want. O

2. Let 0 € Sy, and write 0 = 7172 -+ - T as a product of disjoint cycles. Suppose 7; is a ki-cycle. We say that the
cycle type of o is {k1,...,k,}, which is an unordered list, as disjoint cycles commute.

(i) Prove that any two permutations are conjugate if and only if they have the same cycle type. Hint: First
consider the case of a cycle. (5 points)

(ii) Show that for 7 := (1,2,...,n), the centralizer of 7 in S, is just (v). Hint: Consider the conjugacy class of
7. (5 points)

Solution. For (i), first consider the case of a k-cycle. Let 7 = (i1,...,ix) be a k-cycle, and v € S,. It follows that
vyt = (v(i1), . ..,7(ix)). To see this, note that y7y ™ (y(i;)) = v(ij41), for 1 < j < k—1and 7y~ (v(ix)) = v(41).
If 5 & {7(i1),...,7(ix)}, then v71(§) & {i1,...,ix}, so that y7y~(j) = vy~ *(4) = j, which gives what we want.
This shows that conjugacy class of 7 is contained in the set of all k-cycles. On the other hand, if o := (j1,...,jk) is
a k-cycle and we define v as follows: ~v(i1) = ji,...,7(ix) = jk, and y(s) = s, for s & {i1,...,ir}, then by what we
have just shown, y7y~! = . Thus, any k-cycle is in the conjugacy class of 7, which gives what we want.

Now, if o € S, is written as a product of disjoint cycles 71 --- 7., where 7; is a k;-cycle, then for any v € S,,
yoyt = (yny D (yrey ™) - - (ymyT ), which is a product of disjoint cycles of type ki, ..., k.. Thus, if two elements
of S,, are conjugate, they have the same cycle type.

Now suppose 71 -7 and o1 -- -0, have cycle type {ki,...,k-}. For 1 < ¢ < r, we write 7. = (ic1,...,%k,) and
0c = (Jeiy -+ Jck.). We now define y(ic1) = Jety .-,V (tck.) = Jeke, for all 1 < ¢ < 7, and y(s) = s, for any
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S & {icd}lgegmgdgkc. Note that since the cycles 7. are disjoint, 7 is well-defined. By what we have shown in the
case of one cycle, we have Y7,y = o, for all 1 < ¢ < r. Thus,

YTT2 Ty T = Ay ey Ty T = o100,
which shows that any two permutations with the same cycle type are conjugate. Thus, the conjugacy class of any

permutation equals the set of all permutations having the same cycle type.

For (ii), by what we have just shown, the conjugacy class of 7 is the set of all n-cycles. Since there are (n — 1)!
n-cycles (check this!), the conjugacy class of 7 has (n — 1)! elements. Thus, [S, : Cs,(7)] = (n — 1)!. Therefore
|Cs, (1)] = n. Since o(7) = n and 7 € Cg,, (7), this forces (1) = Cg,, (7), which is what we want. O

3. Recalling that if G acts on a set X with n elements, there exists a group homomorphism ¢ : G — S,,.

(i) Prove that if ¢ : G — S, is a group homomorphism, then G acts on the set X = {z1,...,2,}. (4 points)
(ii) Find an ezplicit group homomorphism from Za X Zs — Ss. (3 points)
(iii) Let Qs act on itself via left multiplication. Use this action to find an explicit group homomorphism from Qs
to Ss. Now find two elements in Ss that generate a subgroup isomorphic to Qs. (3 points)

Solution. For (i), define g - x; := xy(g)(3), for all g € G and x; € X. Then, e x; = T4(c) ) = i, for all z; € X, since
¢(e) € Sy is the identity permutation. Moreover, if a,b € G,

ab - Ti = To(ab)(i) = Ta(a)(s()(i) = & o)) = a- (b~ zi),
so that ¢ induces an action of G on X.

For (ii), number the elements of Zy X Zs as follows: g1 := (0,0),g2 := (1,0),g93 := (0,1),94 := (1,1). We define
¢ : Zo X Lo — Sy as follows: ¢(0,0) = id. To see what ¢(g2) should be, we let g2 act on Zz X Zo via the group

123 4). Similarly, if we

operation gs + g1 = g2, 92 + g2 = g1, 92 + g3 = ga, g2 + g1 = g3, so we define ¢(g2) := (2 1 4 3

let g3, g4 act on Zg X Za, we se ¢(g3) = (; i i’ ;) and ¢(g4) = (}1 ; g le) It is straight forward now to

check that ¢ is a group homomorphism, e.g.,

smrm=ow)=(5 5 5 1)=( 713G 1T 3) et

Part (iii) is similar to part (ii). If we number the elements in Qs as g1 = 1,92 = —1,93 = 4,94 = —1,95 = J, g6 =
—7j,97 = k, gs = —k, and we let each element act on Qs via multiplication, we will get ¢ : Qs — Ss satisfying ¢(1) = id,
1 2 3 45 6 7 8\ ,. (1 2 3 45 6 728 ,., (1 2 3 45 6 7 8
¢(*1)_<2 1 436 5 8 7)’¢(’)_(3 4 217 8 6 5)’¢(])_(5 6 8 7 2 1 3 4)
. Lo 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
etc. Since Qs = (i,7), it follows that <3 4121 7 8 6 5) and <5 6 8 7 2 1 3 4> generate a
subgroup of Sg isomorphic to Qs. a

4. Let G be a group satisfying |G| = p?, where p is a prime. Show that G is isomorphic to Zy2 ot ZLp X Zp. (10 points)

Solution. We first show that G is abelian. As shown in class, the class equation gives that Z(G) # {e}. Since |Z(G)|
divides p?, we have |Z(G)| = p? or p. In the first case, G = Z(G), so G is abelian. In the second case, G/Z(G) has
order p and is therefore cyclic. From Homework 4 this implies G is abelian. To see this, assume G/Z(G) = (9Z(G)),
and take a,b € G. Then a € ¢'Z(G) and b € ¢°Z(G), for some 4,5. Thus, a = g'z1 and b = ¢’ z,, for some
21,22 € Z(G). Thus,

ab = (g'21) (g’ (22)
— giJerzZQ
= ngQ‘inQ
= ba,

which is what we want. Now, if G has an element of order p?, then G is cyclic, and therefore isomorphic to L2

Otherwise, evey non-identity element of G has order p. Take e # a € G and b ¢ {a). We claim that the elements a‘b’

such that 0 < 4,j < p — 1 are distinct. Suppose a’¥’ = a"b®, with 0 < 4,4,7,5 < p— 1. Then a "™ = b°77, and this

element belongs to (a) N (b). However, (a) N (b) is a subgroup of (a), which has order p. By Lagrange’s theorem, this

forces (a) N (b) to either have one element, or be equal to (a). Since b & (a), we must have (a) N (b) = {e}. Thus,

a” """ = e and b°77 = e. Therefore, a’ = a” and b = b°. Since 0 < i,j,7,s < p — 1, this forces i = r,j = s, so the
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elements {aibj}, with 0 < 4,7 < p — 1 are distinct. Since there are p? such elements, these are precisely the elements
of G.

We now define ¢ : G — Z, X Zp by ¢(aib.j)v = (i,7). Note that ¢ is well-defined, since the expressions a’b?, with
0 <4i,j <p—1 are unique. Now consider a'b’,a"b® € G. Write i +r = pg+u and j+ s = ph+v, where 0 < v, h < p.
Note, it could be that g or h (or both) are zero. Using that a”? = b = e, we have,

¢(a’t’ - a"b*) = p(a’ V)
= ¢(a"b")
= (u,7)
=(i+rj+s)
= (i,4) + (7,5)
= ¢(a't’) + ¢(a"b%),
showing that ¢ is a group homomorphism. It is clear that ¢ is surjective. Finally, if ¢(a’d’) = (0,0), then ¢ = 0 mod

pand j =0 mod p. Since 0 <4, <p— 1, we have i = 0 = j, and thus a's’ = e, showing that ¢ is injective. Thus,
G X7y X L. (|

5. Let H, K be groups admitting a group homomorphism ¢ : K — Aut(H), where Aut(H) denotes the automorphism
group of H. This problem constructs the semi-direct product of H and K, denoted H x4 K.

(i) Show that K acts on H via ¢, i.e., k- h := ¢(k)(h) defines an action of K on H. (2 points)
(ii) Define a binary operation on H x4 K as follows: (h1, k1)(ha, k2) := (h1(k1 - he), kik2). Show that H x4 K is
a group under this binary operation. (2 points)
(iii) Show that H and K are isomorphic to their natural images H' := {(h,1) | h € H}, and K’ := {(1,k) | k € K}
G. (2 points)
(iv) Show H' is normal in H x4 K and H' N K’ = identity in H x4 K. (2 points)
(v) Prove that for all b’ € H' and k¥’ € K', (k-h) = k'h/(kK')™*. (2 points)

Solution. For (i), ex - h = ¢(ex)(h) = id(h) = h, for all h € H, since ¢ is a group homomorphism. For ab € K and
he H,ab-k = ¢(ab)(h) = ¢(a)(p(b)(h)) =a-¢(b)(h) =a- (b-h), so that K acts on H.
For (ii), for simplicity let us denote by 1 the identity element in each of H and K. Then we have

(1,1)(h,k) = (1(1 - h),1k) = (h,k) = (h(1 - en), k1) = (h,k)(1,1),

showing that (1,1) is an identity element. Moreover, given (h, k) € H x4 K, let b’ € H be such that ¢(k)(h') = h™'.
We can do this, since ¢(k) is an automorphism of H. Thus,

(h,k)(W' k") = (ho(k)(h), 1)
— (hh™',1)
=(1,1) = (R'(K)"",1)
= (Wo(k)~'(h), 1)
= (k™" h kT k)
= (W, k" (h, k)
So inverses exist.
Now take (h, k), (a,b), (¢,d) € H x4 K. Then, on the one hand,
(h, k){(a,b)(c,d)} = (h, k)(ag(b)(c), bd)
= (ho(k)(ad(b)(c)), k(bd))
= (ho(k)(a)o(k)((b)(c)), k(bd)),

since ¢(k) is a group homomorphism. On the other hand,

{(h, k)(a,b)}(c,d) = (ho(K)(a), kb)(c, d)



since ¢(kb)(c) = ¢(k)(¢(b)(c)), which shows multiplication in H x4 K is associative (since k(bd) = (kb)d in K). Thus
H x4 K is a group.

For (iii), define ¢ : H — H' by a(h) = (h,1). Since (h1,1)(h2,1) = (h1(1 - h2),1) = (h1h2,1), a is a group
homomorphism which is clearly 1-1 and onto. Now define ¢ : K — K’ by ¢(k) = (1,k). Then

(1, k2)(1, k2) = (1(k1 - 1), krkz) = (1, k1 kz),
since k1 - 1 = 1 because ¢(k1)(1) = 1. Thus, 9 is a group homomorphism which is clearly 1-1 and onto.
For (iv), H' N K’ = (1,1), which is the identity element of H x4 K. Now consider (h, k)~ (ho, 1)(h, k). We have
(h, k)" (ho, 1) (h, k) = (h, k) *(ho(1- h), k) = (h, k)~ " (hoh, k) = (', k™ ") (hoh,k) = (K (k™" - hoh),1) € H'
where (h, k)™ = (b, k™1), for some b’ € H as in part (ii). Thus, H' is normal in H x4 K.
For (v), on the one hand, (k- h)" = (¢(k)(h)) = (¢(k)(h),1). On the other hand,

KR (k)™ = (Lk) (R 1D(1E
= (1(k - h), )(1 k)
= (¢(k)(h), k)(1,k™")
= (oK) (h)(k - ) 1)
= (¢(K)(h), 1),
which gives what we want, since k-1 = 1. ]

6. Let G be a group with subgroups H, K satisfying: H is normal in G, HN K = {e} and G = HK. For k € K, let
T, : H — H be conjugation by k.
(i) Show that 7, € Aut(H) and ¢ : K — Aut(H), given by ¢(k) = 7, is a group homomorphism. (3 points)
(ii) Prove that G = H x4 K. (5 points)
(iii) Show that Ss is isomorphic to Zs X g Z2, for some ¢ : Zz — Aut(Zs). (2 points)

Solution. For (i), we take h,h’ € H. Then 74(hh') = k(hh )k~ = khk™'kh'k™' = 7.(R)7(R'), so that 73 is a
group homomorphism from H to H. It is easy to see that the kernel of 7 is the identity, so 7% is 1-1. Finally, if
h € H, k*hk € H, since H is normal, so that 7(k~'hk) = kk~'hkk™! = h, showing that 73 is onto. Thus, 74 is an
automorphism of H. To see that ¢ is a group homomorphism, see part (ii) below.

For (ii), We first note that ¢ : K — Aut(H) given by ¢(k) = 7% is a group homomorphism. For this, it suffices to
show that for all k1, k2 € K, Tk ky = Tk, Tk, as elements of Aut(H). For any h € H we have

Thyky () = kikoh(k1ka) ™" = kikahky "ky ' = kumiy (R)kT " = 7oy (Try (R)),
which gives what we want.

Before defining a group homomorphism between G and H x4 K, we need to see how multiplication in G works. Given
hk,hiki € G = HK, we have hkhik1 = (hh})(kk1), where khy = hlk, for some h}] € K, since H is normal in G.
Thus, k) = khk™!, so we have

hkhiky = h(khik™")(kk1), (%)
which look like a semi-direct product.
Suppose now that hik; = hoks, with ki, he € H and k1, ke € K. Then, hy'hi = kok; ! belongs to HN K = {e}.
Thus, hz_lhl —e= kal_l, showing h1 = he and k1 = ka. Thus, every element in G can be written uniquely in the
form hk, with h € H and k € K.

Let ¢ : K — Aut(H) be as above, and define ¢ : G — H x4 K by ¢(hk) = (h,k), for all hk € HK = G. By the
preceding paragraph, 1 is well defined. Take hk, hiki € G. Then, using (*) above, we have

Y((hk) (hakn)) = (h(k™ hak) (k) = (kb kkr) = (A (k) (h), kkr) = (b, B)(hikr) = (RE) (k)

showing that v is a group homomorphism. Since the kernel of ¢ is clearly {e} and % is clearly onto, we have that
is an isomorphism of groups, which give what we want.

For (iii), we let G := S3, H := ((1,2,3)) and K := ((1,2)). Then G, H, K satisfy the conditions in the statement of
problem 6. Thus, G = H x4 K, where ¢ is defined as in (ii). Since H 2 Z3 and K 2 Z,, this gives the result.

7. Let 0 € A, and write ¢(o) for the conjugacy class of o in S,. Show that either ¢(o) is a conjugacy class in A, or
c(0o) is the disjoint union of two conjugacy classes in A, of equal order. (10 points)
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Solution. Let ca, (o) denote the conjugacy class of o in A,. We have |c¢(o)| = [Sn : Cs, (0)]. Suppose Cs,, (o) C A,.
Then

|c(0)] = [Sn : Cs,, (0)] = [Sn : An] - [An : Cs, ()] = 2 [An : s, ()] = 2 [ca, (0)].

Set r := [A, : Cs, (0)] and let a1Cs, (0),...,arCs, (o) denote the distinct left cosets of Cs,, (o) in A, (say a1 = e).
Then they are also distinct left cosets of Cg, (o) in S,. It follows that there exist v1,...,7v € Sn\A, such that
a1Cs, (0),...,a:Cs,(0),11Cs,(0),...,7Cs, (c) are the distinct left cosets of Cg, (¢) in Sy,. Thus,

c(o) ={aoar’,...,aroa; " Y U{viony ', ooy T h (k)

a disjoint union. Since each ~; is an odd permutation, we may write v; = b;(1,2), where b; € A,. Thus, each
yioy;, = bi((1,2)0(1,2))b; ! showing that each y;0v; ' is an A, conjugate of (1,2)c(1,2) € A,. Since the group
(1,2)Cs, (0)(1,2) is contained in A,, and is isomorphic to Clg,, (¢), the number of A,, conjugates of (1,2)o(1,2) equals
the number of A, conjugates of . Thus (**) shows that c(o) is the disjoint union of two conjugacy class in A,
having the same number of elements.

Now suppose Cs, (¢) € A,. We will show ca, (¢) = ¢(c). Clearly, ca, (¢) C c(o). Let gog™" € c(o). If g is even,
then gog™' € ca, (). Suppose g is odd. Let 7 € Cs, (0) be an odd permutation, which exists by assumption. Then
g7 is even, and we have, (g7)o(g7) ™' = gror " g™! = gog~! showing that gog™" € ca, (0). Thus, ¢(o) = ca, (o), as
required. g

8. Prove that the two-cycles (1,2),(2,3),...,(n — 1,n) generate S,. (10 points)

Solution. Since every permutation in S, is a product of two-cycles, it suffices to show that any (i,7) withi < j <n
is a product of two-cycles from the given collection. This is clearly true for (¢,% + 1). Suppose by induction (3, j) is
a product of two-cycles from the given collection. Then (j,7 + 1)(¢,5)(j, 5 + 1) = (4,5 + 1) shows that (i,5+ 1) is a
product of two-cycles from the given collection, which is what we want. (|

9. Verify the class equation for Sy and As. (10 points)

Solution. We use problems 2 and 7. For Sy, by problem 2, the conjugacy classes correspond to cycle types. So let
o € Su, There are (3) = 6 two-cycles, so |¢((1,2))| = 6. There are 8 three-cycles, so |¢((1,2,3))| = 8. There are three
permutations that are products of two disjoint two-cycles, so |c¢((1,2)(3,4))| = 3. There are six four-cycles. To see
this note that the cycles (1,a,b,c) are all distinct, where a,b, ¢ is a permutation of 2,3,4. Thus, |c((1,2,3,4))| = 6.

We have so far accounted for 6 + 8 + 3 4+ 6 = 23 elements in S4. Only e is left, which also shows |Z(S4)| = 1. Thus,

24=S4/=1+6+8+3+6
=1Z(Sa)| + 1e((1,2))] + 1e((1,2,3)| + [e((1,2)(3, )| + [e((1, 2,3, 4))]

where we have accounted for all elements whose conjugacy class contains more than one element.

We repeat the same analysis for As, but using both problems 2 and 7. Let X = {1,2,3,4,5}. If we are given four
elements a, b, c,d € X, we may form three even permutations from them that are products of two disjoint two-cycles.
Doing this for all five choices of a, b, ¢, d, we have that |c¢((1,2)(3,4))| = 15, where ¢((1,2)(3,4)) denotes the conjugacy
class of (1,2)(3,4) in Ss. Since (1,2) commutes with (1,2)(3,4), the centralizer of (1,2)(3,4) is not contained in As,
so by problem 7, ¢((1,2)(3,4)) = ca5((1,2)(3,4)), and thus |ca;((1,2)(3,4))] = 15.

There are 20 three-cycles in Ss, so that |¢((1,2,3))] = 20. Since (4,5) is an odd cycle commuting with (1,2,3),
problem 7 gives 20 = |ca;((1,2,3))].

Now consider the five-cycle (1,2,3,4,5). By problem 2, the centralizer of (1,2,3,4,5) is ((1,2,3,4,5)) C As. Thus,
by problem 7, ¢((1,2,3,4,5) = ca5((1,2,3,4,5)) Ucas((1,2)(1,2,3,4,5)(1,2)). Note that (1,2)(1,2,3,4,5)(1,2) =
(1,3,4,5,2). Since there are 4! = 24 five-cycles in S5, by problem 2, ¢((1,2,3,4,5))| = 24, and thus, by problem 7,
leas((1,2,3,4,5))] =12 = |ea ((1, 3,2,4,5))].

We have now accounted for 15420+ 12412 = 59 elements in As. This leaves just e, showing | Z(As)| = 1. Therefore,
we have

60 =|As| =14+ 15+20+ 12 + 12
=1Z2(G)| + leas ((1,2)(3,4))] + leas ((1,2,3))] + leas (1,2, 3,4,5))| + [ca; (((1,3,4,5,2))],
thereby verifying the class equation for As.

10. Let G be a non-abelian group of order p®, p a prime. How many conjugacy classes with more than one element
does G have? (10 points)

o



Solution. By the class equation, Z(G), the center of G is not trivial. Since G is non-abelian, |Z(G)| = p or p*. If
|Z(&)| = p?, G/Z(G) has order p, so that G/Z(G) is cyclic. Since this implies G is abelian, we must have |Z(G)| = p.
Thus, the class equation becomes:

P’ = |G| =p+ Zi_|e(z:)]
=p+3i,[G: Co(zi)],

where the sum is taken over the conjugacy classes with more than one element. If [G : Cg(x:)] = p?, it would then
follow that Z(G) = Cg(zs), which is a contradiction, since z; ¢ Z(G). Thus, each [G : Cg(z;)] = p. Therefore,
p® = p + rp, which implies r = p* — 1. |

Bonus Problem. For n > 5, show that A,, is the only proper normal subgroup of S,,. This problem must be correct
to receive any credit.

Solution. We follow the path laid out in Homework 8.

(i) Let G be a group and A, B normal subgroups of G. Then AN B is a normal subgroup. Conclude that if A is a
simple group, then AN B = {e}. This is pretty clear. AN B is easily seen to be a subgroup, and if x € AN B and
g € G, then grg™' € A and grg~' € B, so grg~' € AN B, showing that AN B is normal in G. Since A N B is also
normal in A, if A is simple then AN B = {e}.

(ii). Suppose G is a group and A C G is a normal subgroup of index two. Let B C G be a normal subgroup. Show
that if A is a simple group, then B must have order two. To see this, first note that by (i) AN B = {e}. Now,
suppose b1, bs € B are non-identity elements. Then b1, by &€ A, and thus b1 A = b2 A, since A has index two. Therefore,
b;lbl € A and thus b;lbg € AN B = e, so that by = ba. Thus, B has two elements.

(iii). Let G be a group and B = {e, b} a normal subgroup of order two. Then b € Z(G), the center of G. This follows,
since, for all g € g, g~ 'bg = b, so bg = gb, i.e., b € Z(G).

(iv). Suppose G is a group, and A C G is a normal subgroup of index two. Show that if A is a simple group and
Z(G) = {e}, then A is the only proper normal subgroup of G. This follows from the previous step, since if there
there were another normal subgroup, it would have to be contained in Z(G).

So now, to apply the above to S, with, n > 5: A, is a simple group of index two. To see that A, is the only
normal subgroup of S, it suffices by (iv) to see that Z(S,) = {e}. For this, it suffices to show that if o € Sy,
then there exists 7 € Sy, such that o7 # 70. Take 4,j € X, such that ¢ # j and o(i) = j. Take k # ¢, 7, and set
7 = (j,k). Then, 70(i) = 7(j) = k. On the other hand, o7(i) = (i) = j. Thus, ¢ and 7 do not commute, showing
Z(Sn) = {e}. .



