
SPRING 2023: MATH 791 EXAM 1 SOLUTIONS

For this exam, you may use your notes, the Daily Summary, and any homework you have done, but you may not
consult any other sources, including, any algebra textbook, the internet, graduate students not in this class, or any
professor except your Math 791 instructor. You may not cite any group theoretical facts not covered in class or the
homework. To receive full credit, all proofs must be complete and contain the appropriate amount of detail. Please
upload a pdf copy of your solutions to Canvas no later than 5pm on Monday, February 20.

Good luck on the exam!

1. Let G be a group and H ⊆ G a proper subgroup. The normalizer of H is the set NG(H) = {g ∈ G | gHg−1 = H}.
(i) Show that NG(H) is the largest subgroup of G in which H is normal and there is a 1-1 correspondence

between the distinct (left) cosets of NG(H) and the distinct conjugates of H. (2 points)
(ii) Show that if G is finite, then G 6=

⋃
g∈G gHg

−1. ( 5 points)

(iii) Let G = Gl2(C) and H be the subgroup of invertible lower triangular matrices. Show that G =
⋃
g∈G gHg

−1.

Hint: Use the Jordan Canonical Form theorem. (3 points)

Solution. For (i), suppose a, b ∈ NG(H). Then abH(ab)−1 = abHb−1a−1 = aHa−1 = H, so ab,∈ NG(H). Suppose
a−1ha ∈ a−1Ha. Then, h = ah′a−1, for some h′ ∈ H. Thus, a−1ha = a−1(ah′a−1)a = h′ ∈ H, showing a−1Ha ⊆ H.
The reverse containment is similar. Thus, a−1Ha = H, so NG(H) is a subgroup. Suppose K is a subgroup of G
containing H in which H is normal. Then kHk−1 = H, for all k ∈ K, so that K ⊆ NG(H), showing that NG(H) is
the largest subgroup of G in which H is normal.

If now X denotes the set of distinct conjugates of H and Y denotes the set of distinct left cosets of NG(H), we
define φ : X → Y by φ(gHg−1) = gNG(H). Then aHa−1 = bHb−1 if and only if (b−1a)Ha−1b = H if and only if
(b−1a)H(b−1a)−1 = H if and only if b−1a ∈ NG(H) if and only if aNG(H) = bNG(H), showing that φ is well-defined
and 1-1. Moreover, ψ is clearly onto, which gives what we want.

For (ii), by (i), if g1Hg
−1
1 , . . . , grHg

−1
r are the distinct conjugates of H, then g1NG(H), . . . , grNG(H) are the distinct

left cosets of NG(H). Now, G is the disjoint union of the cosets giNG(H), so that |G| = r · |NG(H)|. On the other
hand, |giHg−1

i | = |H| ≤ |NG(H)| and |
⋃
i giHg

−1
i | < r · |H|, since e belongs to each giHg

−1
i . Thus, we cannot have

G =
⋃
i giHg

−1
i .

For (iii), if A ∈ G, then there exists g ∈ G such that g−1Ag is in JCF, which is lower triangular. Note, that since A
is invertible, its eigenvalues are non-zero, so that g−1Ag ∈ G, and therefore g−1Ag ∈ H. Thus, A ∈ gHg−1, which
gives what we want. �

2. Let σ ∈ Sn, and write σ = τ1τ2 · · · τr as a product of disjoint cycles. Suppose τi is a ki-cycle. We say that the
cycle type of σ is {k1, . . . , kr}, which is an unordered list, as disjoint cycles commute.

(i) Prove that any two permutations are conjugate if and only if they have the same cycle type. Hint: First
consider the case of a cycle. (5 points)

(ii) Show that for τ := (1, 2, . . . , n), the centralizer of τ in Sn is just 〈τ〉. Hint: Consider the conjugacy class of
τ . (5 points)

Solution. For (i), first consider the case of a k-cycle. Let τ = (i1, . . . , ik) be a k-cycle, and γ ∈ Sn. It follows that
γτγ−1 = (γ(i1), . . . , γ(ik)). To see this, note that γτγ−1(γ(ij)) = γ(ij+1), for 1 ≤ j ≤ k−1 and γτγ−1(γ(ik)) = γ(i1).
If j 6∈ {γ(i1), . . . , γ(ik)}, then γ−1(j) 6∈ {i1, . . . , ik}, so that γτγ−1(j) = γγ−1(j) = j, which gives what we want.
This shows that conjugacy class of τ is contained in the set of all k-cycles. On the other hand, if σ := (j1, . . . , jk) is
a k-cycle and we define γ as follows: γ(i1) = j1, . . . , τ(ik) = jk, and γ(s) = s, for s 6∈ {i1, . . . , ik}, then by what we
have just shown, γτγ−1 = σ. Thus, any k-cycle is in the conjugacy class of τ , which gives what we want.

Now, if σ ∈ Sn is written as a product of disjoint cycles τ1 · · · τr, where τi is a ki-cycle, then for any γ ∈ Sn,
γσγ−1 = (γτ1γ

−1)(γτ2γ
−1) · · · (γτrγ−1), which is a product of disjoint cycles of type k1, . . . , kr. Thus, if two elements

of Sn are conjugate, they have the same cycle type.

Now suppose τ1 · · · τr and σ1 · · ·σr have cycle type {k1, . . . , kr}. For 1 ≤ c ≤ r, we write τc = (ic1, . . . , ickc) and
σc = (jc1, . . . , jckc). We now define γ(ic1) = jc1, . . . , γ(ickc) = jckc , for all 1 ≤ c ≤ r, and γ(s) = s, for any
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S 6∈ {icd}1≤c≤r,1≤d≤kc . Note that since the cycles τc are disjoint, γ is well-defined. By what we have shown in the
case of one cycle, we have γτcγ

−1 = σc, for all 1 ≤ c ≤ r. Thus,

γτ1τ2 · · · τrγ−1 = γτ1γ
−1γτ2γ

−1 · · · γτrγ−1 = σ1σ2 · · ·σr,

which shows that any two permutations with the same cycle type are conjugate. Thus, the conjugacy class of any
permutation equals the set of all permutations having the same cycle type.

For (ii), by what we have just shown, the conjugacy class of τ is the set of all n-cycles. Since there are (n − 1)!
n-cycles (check this!), the conjugacy class of τ has (n − 1)! elements. Thus, [Sn : CSn(τ)] = (n − 1)!. Therefore
|CSn(τ)| = n. Since o(τ) = n and τ ∈ CSn(τ), this forces 〈τ〉 = CSn(τ), which is what we want. �

3. Recalling that if G acts on a set X with n elements, there exists a group homomorphism φ : G→ Sn.

(i) Prove that if φ : G→ Sn is a group homomorphism, then G acts on the set X = {x1, . . . , xn}. (4 points)
(ii) Find an explicit group homomorphism from Z2 × Z2 → S4. (3 points)

(iii) Let Q8 act on itself via left multiplication. Use this action to find an explicit group homomorphism from Q8

to S8. Now find two elements in S8 that generate a subgroup isomorphic to Q8. (3 points)

Solution. For (i), define g · xi := xφ(g)(i), for all g ∈ G and xi ∈ X. Then, e · xi = xφ(e)(i) = xi, for all xi ∈ X, since
φ(e) ∈ Sn is the identity permutation. Moreover, if a, b ∈ G,

ab · xi = xφ(ab)(i) = xφ(a)(φ(b)(i)) = a · xφ(b)(i) = a · (b · xi),

so that φ induces an action of G on X.

For (ii), number the elements of Z2 × Z2 as follows: g1 := (0, 0), g2 := (1, 0), g3 := (0, 1), g4 := (1, 1). We define
φ : Z2 × Z2 → S4 as follows: φ(0, 0) = id. To see what φ(g2) should be, we let g2 act on Z2 × Z2 via the group

operation g2 + g1 = g2, g2 + g2 = g1, g2 + g3 = g4, g2 + g4 = g3, so we define φ(g2) :=

(
1 2 3 4
2 1 4 3

)
. Similarly, if we

let g3, g4 act on Z2 × Z2, we se φ(g3) =

(
1 2 3 4
3 4 1 2

)
and φ(g4) =

(
1 2 3 4
4 3 2 1

)
. It is straight forward now to

check that φ is a group homomorphism, e.g.,

φ(g2 + g3) = φ(g4) =

(
1 2 3 4
4 3 2 1

)
=

(
1 2 3 4
2 1 4 3

)(
1 2 3 4
3 4 1 2

)
= φ(g2)φ(g3).

Part (iii) is similar to part (ii). If we number the elements in Q8 as g1 = 1, g2 = −1, g3 = i, g4 = −i, g5 = j, g6 =
−j, g7 = k, g8 = −k, and we let each element act on Q8 via multiplication, we will get φ : Q8 → S8 satisfying φ(1) = id,

φ(−1) =

(
1 2 3 4 5 6 7 8
2 1 4 3 6 5 8 7

)
, φ(i) =

(
1 2 3 4 5 6 7 8
3 4 2 1 7 8 6 5

)
, φ(j) =

(
1 2 3 4 5 6 7 8
5 6 8 7 2 1 3 4

)
,

etc. Since Q8 = 〈i, j〉, it follows that

(
1 2 3 4 5 6 7 8
3 4 2 1 7 8 6 5

)
and

(
1 2 3 4 5 6 7 8
5 6 8 7 2 1 3 4

)
generate a

subgroup of S8 isomorphic to Q8. �

4. Let G be a group satisfying |G| = p2, where p is a prime. Show that G is isomorphic to Zp2 or Zp×Zp. (10 points)

Solution. We first show that G is abelian. As shown in class, the class equation gives that Z(G) 6= {e}. Since |Z(G)|
divides p2, we have |Z(G)| = p2 or p. In the first case, G = Z(G), so G is abelian. In the second case, G/Z(G) has
order p and is therefore cyclic. From Homework 4 this implies G is abelian. To see this, assume G/Z(G) = 〈gZ(G)〉,
and take a, b ∈ G. Then a ∈ giZ(G) and b ∈ gjZ(G), for some i, j. Thus, a = giz1 and b = gjz2, for some
z1, z2 ∈ Z(G). Thus,

ab = (giz1)(gj(z2)

= gi+jz2z2

= gjz2g
iz2

= ba,

which is what we want. Now, if G has an element of order p2, then G is cyclic, and therefore isomorphic to Zp2 .

Otherwise, evey non-identity element of G has order p. Take e 6= a ∈ G and b 6∈ 〈a〉. We claim that the elements aibj

such that 0 ≤ i, j ≤ p− 1 are distinct. Suppose aibj = arbs, with 0 ≤ i, j, r, s ≤ p− 1. Then a−r+i = bs−j , and this
element belongs to 〈a〉 ∩ 〈b〉. However, 〈a〉 ∩ 〈b〉 is a subgroup of 〈a〉, which has order p. By Lagrange’s theorem, this
forces 〈a〉 ∩ 〈b〉 to either have one element, or be equal to 〈a〉. Since b 6∈ 〈a〉, we must have 〈a〉 ∩ 〈b〉 = {e}. Thus,
a−r+i = e and bs−j = e. Therefore, ai = ar and bj = bs. Since 0 ≤ i, j, r, s ≤ p − 1, this forces i = r, j = s, so the
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elements {aibj}, with 0 ≤ i, j ≤ p− 1 are distinct. Since there are p2 such elements, these are precisely the elements
of G.

We now define φ : G → Zp × Zp by φ(aibj) = (i, j). Note that φ is well-defined, since the expressions aibj , with
0 ≤ i, j ≤ p− 1 are unique. Now consider aibj , arbs ∈ G. Write i+ r = pq+u and j+ s = ph+ v, where 0 ≤ v, h < p.
Note, it could be that q or h (or both) are zero. Using that ap = bp = e, we have,

φ(aibj · arbs) = φ(ai+rbj+s)

= φ(aubv)

= (u, v)

= (i+ r, j + s)

= (i, j) + (r, s)

= φ(aibj) + φ(arbs),

showing that φ is a group homomorphism. It is clear that φ is surjective. Finally, if φ(aibj) = (0, 0), then i ≡ 0 mod
p and j ≡ 0 mod p. Since 0 ≤ i, j ≤ p− 1, we have i = 0 = j, and thus aibj = e, showing that φ is injective. Thus,
G ∼= Zp × Zp. �

5. Let H,K be groups admitting a group homomorphism φ : K → Aut(H), where Aut(H) denotes the automorphism
group of H. This problem constructs the semi-direct product of H and K, denoted H oφ K.

(i) Show that K acts on H via φ, i.e., k · h := φ(k)(h) defines an action of K on H. (2 points)
(ii) Define a binary operation on H oφK as follows: (h1, k1)(h2, k2) := (h1(k1 · h2), k1k2). Show that H oφK is

a group under this binary operation. (2 points)
(iii) Show that H and K are isomorphic to their natural images H ′ := {(h, 1) | h ∈ H}, and K′ := {(1, k) | k ∈ K}

G. (2 points)
(iv) Show H ′ is normal in H oφ K and H ′ ∩K′ = identity in H oφ K. (2 points)
(v) Prove that for all h′ ∈ H ′ and k′ ∈ K′, (k · h)′ = k′h′(k′)−1. (2 points)

Solution. For (i), eK · h = φ(eK)(h) = id(h) = h, for all h ∈ H, since φ is a group homomorphism. For ab ∈ K and
h ∈ H, ab · k = φ(ab)(h) = φ(a)(φ(b)(h)) = a · φ(b)(h) = a · (b · h), so that K acts on H.

For (ii), for simplicity let us denote by 1 the identity element in each of H and K. Then we have

(1, 1)(h, k) = (1(1 · h), 1k) = (h, k) = (h(1 · eH), k1) = (h, k)(1, 1),

showing that (1, 1) is an identity element. Moreover, given (h, k) ∈ H oφK, let h′ ∈ H be such that φ(k)(h′) = h−1.
We can do this, since φ(k) is an automorphism of H. Thus,

(h, k)(h′, k−1) = (hφ(k)(h′), 1)

= (hh−1, 1)

= (1, 1) = (h′(h′)−1, 1)

= (h′φ(k)−1(h), 1)

= (h′k−1 · h, k−1k)

= (h′, k−1)(h, k)

so inverses exist.

Now take (h, k), (a, b), (c, d) ∈ H oφ K. Then, on the one hand,

(h, k){(a, b)(c, d)} = (h, k)(aφ(b)(c), bd)

= (hφ(k)(aφ(b)(c)), k(bd))

= (hφ(k)(a)φ(k)(φ(b)(c)), k(bd)),

since φ(k) is a group homomorphism. On the other hand,

{(h, k)(a, b)}(c, d) = (hφ(k)(a), kb)(c, d)

= (hφ(k)(a)φ(kb)(c), (kb)d)

= (hφ(k)(a)φ(k)(φ(b)(c)), (kb)d)
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since φ(kb)(c) = φ(k)(φ(b)(c)), which shows multiplication in H oφK is associative (since k(bd) = (kb)d in K). Thus
H oφ K is a group.

For (iii), define φ : H → H ′ by α(h) = (h, 1). Since (h1, 1)(h2, 1) = (h1(1 · h2), 1) = (h1h2, 1), α is a group
homomorphism which is clearly 1-1 and onto. Now define ψ : K → K′ by φ(k) = (1, k). Then

(1, k2)(1, k2) = (1(k1 · 1), k1k2) = (1, k1k2),

since k1 · 1 = 1 because φ(k1)(1) = 1. Thus, ψ is a group homomorphism which is clearly 1-1 and onto.

For (iv), H ′ ∩K′ = (1, 1), which is the identity element of H oφ K. Now consider (h, k)−1(h0, 1)(h, k). We have

(h, k)−1(h0, 1)(h, k) = (h, k)−1(h0(1 · h), k) = (h, k)−1(h0h, k) = (h′, k−1)(h0h, k) = (h′(k−1 · h0h), 1) ∈ H ′

where (h, k)−1 = (h′, k−1), for some h′ ∈ H as in part (ii). Thus, H ′ is normal in H oφ K.

For (v), on the one hand, (k · h)′ = (φ(k)(h))′ = (φ(k)(h), 1). On the other hand,

k′h′(k′)−1 = (1, k)(h, 1)(1, k−1)

= (1(k · h), k)(1, k−1)

= (φ(k)(h), k)(1, k−1)

= (φ(k)(h)(k · 1), 1)

= (φ(k)(h), 1),

which gives what we want, since k · 1 = 1. �

6. Let G be a group with subgroups H,K satisfying: H is normal in G, H ∩K = {e} and G = HK. For k ∈ K, let
τk : H → H be conjugation by k.

(i) Show that τk ∈ Aut(H) and φ : K → Aut(H), given by φ(k) = τk, is a group homomorphism. (3 points)
(ii) Prove that G ∼= H oφ K. (5 points)

(iii) Show that S3 is isomorphic to Z3 oφ Z2, for some φ : Z2 → Aut(Z3). (2 points)

Solution. For (i), we take h, h′ ∈ H. Then τk(hh′) = k(hh′)k−1 = khk−1kh′k−1 = τk(h)τk(h′), so that τk is a
group homomorphism from H to H. It is easy to see that the kernel of τk is the identity, so τk is 1-1. Finally, if
h ∈ H, k−1hk ∈ H, since H is normal, so that τk(k−1hk) = kk−1hkk−1 = h, showing that τk is onto. Thus, τk is an
automorphism of H. To see that φ is a group homomorphism, see part (ii) below.

For (ii), We first note that φ : K → Aut(H) given by φ(k) = τk is a group homomorphism. For this, it suffices to
show that for all k1, k2 ∈ K, τk1k2 = τk1τk2 as elements of Aut(H). For any h ∈ H we have

τk1k2(h) = k1k2h(k1k2)−1 = k1k2hk
−1
2 k−1

1 = k1τk2(h)k−1
1 = τk1(τk2(h)),

which gives what we want.

Before defining a group homomorphism between G and HoφK, we need to see how multiplication in G works. Given
hk, h1k1 ∈ G = HK, we have hkh1k1 = (hh′1)(kk1), where kh1 = h′1k, for some h′1 ∈ K, since H is normal in G.
Thus, h′1 = khk−1, so we have

hkh1k1 = h(kh1k
−1)(kk1), (∗)

which look like a semi-direct product.

Suppose now that h1k1 = h2k2, with h1, h2 ∈ H and k1, k2 ∈ K. Then, h−1
2 h1 = k2k

−1
1 belongs to H ∩ K = {e}.

Thus, h−1
2 h1 = e = k2k

−1
1 , showing h1 = h2 and k1 = k2. Thus, every element in G can be written uniquely in the

form hk, with h ∈ H and k ∈ K.

Let φ : K → Aut(H) be as above, and define ψ : G → H oφ K by ψ(hk) = (h, k), for all hk ∈ HK = G. By the
preceding paragraph, ψ is well defined. Take hk, h1k1 ∈ G. Then, using (*) above, we have

ψ((hk)(h1k1)) = ψ(h(k−1h1k)(kk1)) = (hkh1k
−1, kk1) = (hφ(k)(h1), kk1) = (h, k)(h1k1) = ψ(hk)ψ(h1k1),

showing that ψ is a group homomorphism. Since the kernel of ψ is clearly {e} and ψ is clearly onto, we have that ψ
is an isomorphism of groups, which give what we want.

For (iii), we let G := S3, H := 〈(1, 2, 3)〉 and K := 〈(1, 2)〉. Then G,H,K satisfy the conditions in the statement of
problem 6. Thus, G ∼= H oφ K, where φ is defined as in (ii). Since H ∼= Z3 and K ∼= Z2, this gives the result.

7. Let σ ∈ An and write c(σ) for the conjugacy class of σ in Sn. Show that either c(σ) is a conjugacy class in An or
c(σ) is the disjoint union of two conjugacy classes in An of equal order. (10 points)
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Solution. Let cAn(σ) denote the conjugacy class of σ in An. We have |c(σ)| = [Sn : CSn(σ)]. Suppose CSn(σ) ⊆ An.
Then

|c(σ)| = [Sn : CSn(σ)] = [Sn : An] · [An : CSn(σ)] = 2 · [An : CSn(σ)] = 2 · |cAn(σ)|.
Set r := [An : CSn(σ)] and let a1CSn(σ), . . . , arCSn(σ) denote the distinct left cosets of CSn(σ) in An (say a1 = e).
Then they are also distinct left cosets of CSn(σ) in Sn. It follows that there exist γ1, . . . , γr ∈ Sn\An such that
a1CSn(σ), . . . , arCSn(σ), γ1CSn(σ), . . . , γrCSn(σ) are the distinct left cosets of CSn(σ) in Sn. Thus,

c(σ) = {a1σa−1
1 , . . . , arσa

−1
r } ∪ {γ1σγ−1

1 , . . . , γrσγ
−1
r }, (∗∗)

a disjoint union. Since each γi is an odd permutation, we may write γi = bi(1, 2), where bi ∈ An. Thus, each
γiσγ

−1
i = bi((1, 2)σ(1, 2))b−1

i showing that each γiσγ
−1
i is an An conjugate of (1, 2)σ(1, 2) ∈ An. Since the group

(1, 2)CSn(σ)(1, 2) is contained in An and is isomorphic to CSn(σ), the number of An conjugates of (1, 2)σ(1, 2) equals
the number of An conjugates of σ. Thus (**) shows that c(σ) is the disjoint union of two conjugacy class in An
having the same number of elements.

Now suppose CSn(σ) 6⊆ An. We will show cAn(σ) = c(σ). Clearly, cAn(σ) ⊆ c(σ). Let gσg−1 ∈ c(σ). If g is even,
then gσg−1 ∈ cAn(σ). Suppose g is odd. Let τ ∈ CSn(σ) be an odd permutation, which exists by assumption. Then
gτ is even, and we have, (gτ)σ(gτ)−1 = gτστ−1g−1 = gσg−1 showing that gσg−1 ∈ cAn(σ). Thus, c(σ) = cAn(σ), as
required. �

8. Prove that the two-cycles (1, 2), (2, 3), . . . , (n− 1, n) generate Sn. (10 points)

Solution. Since every permutation in Sn is a product of two-cycles, it suffices to show that any (i, j) with i < j ≤ n
is a product of two-cycles from the given collection. This is clearly true for (i, i + 1). Suppose by induction (i, j) is
a product of two-cycles from the given collection. Then (j, j + 1)(i, j)(j, j + 1) = (i, j + 1) shows that (i, j + 1) is a
product of two-cycles from the given collection, which is what we want. �

9. Verify the class equation for S4 and A5. (10 points)

Solution. We use problems 2 and 7. For S4, by problem 2, the conjugacy classes correspond to cycle types. So let
σ ∈ S4, There are

(
4
2

)
= 6 two-cycles, so |c((1, 2))| = 6. There are 8 three-cycles, so |c((1, 2, 3))| = 8. There are three

permutations that are products of two disjoint two-cycles, so |c((1, 2)(3, 4))| = 3. There are six four-cycles. To see
this note that the cycles (1, a, b, c) are all distinct, where a, b, c is a permutation of 2, 3, 4. Thus, |c((1, 2, 3, 4))| = 6.
We have so far accounted for 6 + 8 + 3 + 6 = 23 elements in S4. Only e is left, which also shows |Z(S4)| = 1. Thus,

24 = |S4| = 1 + 6 + 8 + 3 + 6

= |Z(S4)|+ |c((1, 2))|+ |c((1, 2, 3))|+ |c((1, 2)(3, 4))|+ |c((1, 2, 3, 4))|

where we have accounted for all elements whose conjugacy class contains more than one element.

We repeat the same analysis for A5, but using both problems 2 and 7. Let X = {1, 2, 3, 4, 5}. If we are given four
elements a, b, c, d ∈ X, we may form three even permutations from them that are products of two disjoint two-cycles.
Doing this for all five choices of a, b, c, d, we have that |c((1, 2)(3, 4))| = 15, where c((1, 2)(3, 4)) denotes the conjugacy
class of (1, 2)(3, 4) in S5. Since (1, 2) commutes with (1, 2)(3, 4), the centralizer of (1, 2)(3, 4) is not contained in A5,
so by problem 7, c((1, 2)(3, 4)) = cA5((1, 2)(3, 4)), and thus |cA5((1, 2)(3, 4))| = 15.

There are 20 three-cycles in S5, so that |c((1, 2, 3))| = 20. Since (4, 5) is an odd cycle commuting with (1, 2, 3),
problem 7 gives 20 = |cA5((1, 2, 3))|.

Now consider the five-cycle (1,2,3,4,5). By problem 2, the centralizer of (1,2,3,4,5) is 〈(1, 2, 3, 4, 5)〉 ⊆ A5. Thus,
by problem 7, c((1, 2, 3, 4, 5) = cA5((1, 2, 3, 4, 5)) ∪ cA5((1, 2)(1, 2, 3, 4, 5)(1, 2)). Note that (1, 2)(1, 2, 3, 4, 5)(1, 2) =
(1, 3, 4, 5, 2). Since there are 4! = 24 five-cycles in S5, by problem 2, c((1, 2, 3, 4, 5))| = 24, and thus, by problem 7,
|cA5((1, 2, 3, 4, 5))| = 12 = |cA5((1, 3, 2, 4, 5))|.

We have now accounted for 15+20+12+12 = 59 elements in A5. This leaves just e, showing |Z(A5)| = 1. Therefore,
we have

60 = |A5| = 1 + 15 + 20 + 12 + 12

= |Z(G)|+ |cA5((1, 2)(3, 4))|+ |cA5((1, 2, 3))|+ |cA5((1, 2, 3, 4, 5))|+ |cA5(((1, 3, 4, 5, 2))|,

thereby verifying the class equation for A5.

10. Let G be a non-abelian group of order p3, p a prime. How many conjugacy classes with more than one element
does G have? (10 points)
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Solution. By the class equation, Z(G), the center of G is not trivial. Since G is non-abelian, |Z(G)| = p or p2. If
|Z(G)| = p2, G/Z(G) has order p, so that G/Z(G) is cyclic. Since this implies G is abelian, we must have |Z(G)| = p.
Thus, the class equation becomes:

p3 = |G| = p+ Σri=1|c(xi)|
= p+ Σri=1[G : CG(xi)],

where the sum is taken over the conjugacy classes with more than one element. If [G : CG(xi)] = p2, it would then
follow that Z(G) = CG(xi), which is a contradiction, since xi 6∈ Z(G). Thus, each [G : CG(xi)] = p. Therefore,
p3 = p+ rp, which implies r = p2 − 1. �

Bonus Problem. For n ≥ 5, show that An is the only proper normal subgroup of Sn. This problem must be correct
to receive any credit.

Solution. We follow the path laid out in Homework 8.

(i) Let G be a group and A,B normal subgroups of G. Then A ∩ B is a normal subgroup. Conclude that if A is a
simple group, then A ∩ B = {e}. This is pretty clear. A ∩ B is easily seen to be a subgroup, and if x ∈ A ∩ B and
g ∈ G, then gxg−1 ∈ A and gxg−1 ∈ B, so gxg−1 ∈ A ∩ B, showing that A ∩ B is normal in G. Since A ∩ B is also
normal in A, if A is simple then A ∩B = {e}.
(ii). Suppose G is a group and A ⊆ G is a normal subgroup of index two. Let B ⊆ G be a normal subgroup. Show
that if A is a simple group, then B must have order two. To see this, first note that by (i) A ∩ B = {e}. Now,
suppose b1, b2 ∈ B are non-identity elements. Then b1, b2 6∈ A, and thus b1A = b2A, since A has index two. Therefore,
b−1
2 b1 ∈ A and thus b−1

2 b2 ∈ A ∩B = e, so that b1 = b2. Thus, B has two elements.

(iii). Let G be a group and B = {e, b} a normal subgroup of order two. Then b ∈ Z(G), the center of G. This follows,
since, for all g ∈ g, g−1bg = b, so bg = gb, i.e., b ∈ Z(G).

(iv). Suppose G is a group, and A ⊆ G is a normal subgroup of index two. Show that if A is a simple group and
Z(G) = {e}, then A is the only proper normal subgroup of G. This follows from the previous step, since if there
there were another normal subgroup, it would have to be contained in Z(G).

So now, to apply the above to Sn with, n ≥ 5: An is a simple group of index two. To see that An is the only
normal subgroup of Sn it suffices by (iv) to see that Z(Sn) = {e}. For this, it suffices to show that if σ ∈ Sn,
then there exists τ ∈ Sn such that στ 6= τσ. Take i, j ∈ Xn such that i 6= j and σ(i) = j. Take k 6= i, j, and set
τ = (j, k). Then, τσ(i) = τ(j) = k. On the other hand, στ(i) = σ(i) = j. Thus, σ and τ do not commute, showing
Z(Sn) = {e}. �.
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